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This paper presents a novel control-oriented model of the raw emissions of diesel en-
gines. An extended quasistationary approach is developed where some engine process
variables, such as combustion or cylinder charge characteristics, are used as inputs.
These inputs are chosen by a selection algorithm that is based on genetic-programming
techniques. Based on the selected inputs, a hybrid symbolic regression algorithm gener-
ates the adequate nonlinear structure of the emission model. With this approach, the
model identification efforts can be reduced significantly. Although this symbolic regres-
sion model requires fewer than eight parameters to be identified, it provides results
comparable to those obtained with artificial neural networks. The symbolic regression
model is capable of predicting the behavior of the engine in operating points not used for
the model parametrization, and it can be adapted easily to other engine classes. Results
from experiments under steady-state and transient operating conditions are used to show
the accuracy of the presented model. Possible applications of this model are the optimi-
zation of the engine system operation strategy and the derivation of virtual sensor
designs. �DOI: 10.1115/1.3204510�
Introduction
Diesel engines are often used for heavy-duty �HD� as well as

assenger car applications due to their lower fuel consumption
ompared with gasoline engines. One disadvantage of diesel en-
ines is the fact that they emit relatively high amounts of nitrogen
xides �NOx� and particulate matter �PM�. Due to the more strin-
ent future emission legislation, exhaust aftertreatment devices
nd sophisticated operation strategies for the entire engine system
re necessary.

In contrast to gasoline engines, where the aftertreatment prob-
em is solved by using an efficient three-way catalyst, there is no
ftertreatment system for diesel engines established as yet. The
eduction of PM is often tackled by using a diesel particle filter
DPF�, with the disadvantages of a higher fuel consumption due to
he higher backpressure in the exhaust system and the necessary
egeneration of the particle filter. A NOx trap with an impact on
he fuel consumption or a selective catalytic reduction �SCR� cata-
yst are typically used to reduce emissions of nitrogen oxides. The
ngine control system cannot be optimized separately from the
peration strategy of the aftertreatment devices due to the strong
nteractions between them. Furthermore, the optimal operation of

diesel engine itself is a highly complex task. Several actuators
ffect the gas path and the diesel injection system. Figure 1 shows
he gas path of a modern diesel engine and its components and
ctuators. On the basis of limited test bench availability due to
conomic and time restrictions, mathematical models are an es-
ential tool for optimizing the configuration and the operation
trategies in static as well as in transient operation modes. This
arget can be reached only with fast yet accurate models based on

physics-oriented approach to guarantee their fast application to
ther engines.

In this research, various techniques are used to derive a math-
matical model of the raw emissions. The nonlinear extended qua-
istatic emission and combustion model is derived by a symbolic
egression �SR� algorithm. The inputs to the SR algorithm are
haracteristic engine process variables such as combustion center
nd air mass in the cylinder. These variables are chosen by an
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input variable selection �IVS� algorithm. The IVS algorithm is
based on genetic-programming �GP� and artificial neural network
�ANN� techniques. The enveloping gas path structure is repre-
sented by a mean-value engine model. The raw emission model
�REM� is validated with two measurement data sets of a heavy-
duty and a light-duty �LD� diesel engine.

2 Current Modeling Approaches
To model the gas path of the engine, mean-value models are the

state of the art for control-oriented applications �see, for example,
Refs. �1,2��. The mean-value model approach shows a good com-
promise between computational efficiency and accuracy. The rel-
evant engine dynamics are represented by ordinary differential
equations. The combustion is then often treated as quasistatic in
this modeling approach since the gas path actuators used cannot
influence or control the fast dynamics of the combustion process.
At any given engine speed, the torque produced is highly corre-
lated with the actual fuel mass flow, even in transient operating
conditions. In contrast, the engine raw emissions can vary
strongly during transient operation of the engine because the
boundary conditions of the combustion process, such as boost
pressure or exhaust gas recirculation �EGR� rate, influence the
emission formation significantly �3�.

For the engine raw emissions, a control-oriented modeling ap-
proach is not established as yet. Current models reported in litera-
ture can be divided into three main categories:

• empirical models �4,5�
• phenomenological models �6�
• three-dimensional computational fluid dynamics �CFD�

models �7�

The phenomenological and the CFD models are usually crank
angle based and describe the in-cylinder processes in detail. Be-
cause of the high computational costs of these models, such ap-
proaches are not feasible for transient simulations that must run
much faster than real time. Event- or time-based empirical models
are computationally more efficient. Therefore, they can be used
for real-time simulations. Black-box models are typical examples
of this class of models. Since the internal structure of the system

is unknown, the input/output behavior is modeled with either an
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NN algorithm or with a polynomial approach �see, for example,
efs. �4,5��. The disadvantage of such a black-box modeling ap-
roach is the vast number of measurements needed to identify the
arameters. This large number of parameters limits the portability
f such models to other engine types or even to other operating
oints. An approach used to overcome these limitations is the use
f a phenomenological model to produce simulation data to cali-
rate the black-box models. This is a very promising approach for
uture investigation, but the accuracy of the phenomenological
odels to substitute measurement data is not sufficient yet.
Another approach is the use of so-called gray-box models,

hich reflect some of the internal physical laws. A simple poly-
omial approach is presented in Ref. �8�, where a statistical model
f the �NOx� emissions was developed. That model is based on
elevant process variables. Because of the rather physics-based
nputs, the model is suitable to being applied on different engine
ypes. A quasistatic approach is presented in Ref. �3�. The tran-
ient emissions are calculated by static base maps with transient
orrection factors, which are functions of the actual air/fuel ratio.
n ANN approach is presented in Ref. �9� based on characteristic
ressure trace variables such as combustion center, maximum heat
elease rate, or peak pressure generated from steady-state mea-
urements. The ANN is validated on measurement data from a
ransient driving cycle. del Re and Langthaler �10� presented a
odel based on a SR algorithm to estimate the nitrogen oxide

missions directly from the electronic control unit �ECU� signals.
he dynamics of the gas path and the sensors are included in the
quation derived.

Quasistationary Simulations
Quasistationary simulations �QSSs� assume that maps are avail-

ble that describe the correlation between the current operating
oint of the engine defined by engine speed and fuel mass flow
nd the outputs such as torque production. In this research, the
ollutant emission outputs that are subjected to legal limits are
tored in such base maps as well. These maps are built with sta-
ionary measurement data of the entire operation range of the
ngine. The inputs into these maps are engine speed and fuel mass
ow, which represent the actual operating point. The operating
oint variables are scaled in order to increase the portability of the
odels generated. The engine speed is expressed as the mean

iston speed

cm =
�eS

�
�1�

here �e is the engine speed and S is the stroke. The injected fuel
ass flow ṁi is scaled by the engine speed, the displacement

alue Vd, and the lower heating value Hl of the fuel. The fuel

intake manifold

exhaust manifold

turbine

compressor

EGR valve

EGR cooler

intercooler
throttle

intake air

exhaust gas

catalytic converter

air filter

ig. 1 Illustration of a standard diesel engine gas path and its
omponents
ean pressure is then calculated as
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pmf =
Hlṁi4�

Vd�e
�2�

Using these maps, QSSs can be performed. For instance, the qua-
sistationary value of the engine torque is calculated as

Teng0 = f�cm,pmf� �3�

The quasistationary values stored in the base map are linearly
interpolated for the current operating point defined by mean piston
speed and fuel mean pressure. Quasistationary simulations are
useful for calculating the fuel consumption on a transient cycle.
The quasistatic assumption fails for the calculation of engine-out
emissions, as already mentioned in the previous section. Figure 2
shows a comparison between measurement data and results of
quasistationary simulations of the engine torque and the PM emis-
sions during a load step. Clearly, the data of the engine torque and
the quasistationary simulation agree quite well. In contrast, the
PM emissions of the engine are substantially different from the
model prediction. During the transient phase, the amount of PM
emissions detected is significantly higher than the quasistationary
values. These deviations can be explained by analyzing the
boundary condition of the combustion process.

Figure 3 shows the difference between measurement data and
results of quasistationary simulations of the gas path variables and
injection actuators during a load step at constant engine speed.
The relevant gas path variables are boost pressure, EGR rate, and
the temperature after the intercooler. These variables influence the
mass and the gas composition in the cylinder when the intake
valve is closed. The injection actuators are start of injection, fuel
rail pressure, and injection duration. The turbocharger inertia
causes the most significant dynamic effect in a modern direct
injection �DI� diesel engine in that it influences significantly the
boost pressure and the EGR rate during transient operation. The
so-called turbo lag is responsible for the high PM emission during
load steps or in fast acceleration phases �low gear� because these
slow dynamics yield a relatively low air/fuel ratio of the cylinder
charge. Due to the simultaneous occurrence of an EGR rate peak,
the PM emissions are further increased. The start of injection fol-
lows mostly the quasistationary value in transient operating con-
ditions. During a tip-in, the common-rail injection system cannot
follow the desired fuel rail pressure. This leads to longer injection
times, which increases the PM emissions during a few engine
cycles. The longer injection time causes the first PM emission
peak during the load step shown in Fig. 2. The influence on the
transient engine raw emission of the cylinder wall temperature is
negligibly small �11�. Therefore, the temperature effects are ne-
glected in the further investigations. The relevant boundary con-
ditions of the combustion and emission formation can be summa-
rized as

• operating point �injected fuel and engine speed�
• cylinder charge �mass, gas composition, and gas tempera-
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Fig. 2 Comparison between measurement data „black… and re-
sults of quasistationary simulations „gray… during a load step at
constant engine speed: „a… engine torque and „b… PM
ture in the cylinder when the intake valve is closed�

Transactions of the ASME

 license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



e
t
e
o

4

a

F
s
c
t
r

J

Downlo
• injection �fuel rail pressure, start, duration, and split of in-
jection events�

The deviations of the boundary conditions are considered in the
xtended quasistationary REM using correction factors. The ex-
ension describes the static and transient deviations of the raw
missions compared with the quasistationary values. An overview
f the control-oriented REM is presented in the next section.

Overview of the Control-Oriented Model
The basic structure of the proposed control-oriented modeling

pproach is shown in Fig. 4 for the NOx emissions. The proposed
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nonlinear nitrogen oxide model consists of two static parts. In the
base map part,

NOx0 = f�cm,pmf� �4�

the quasistationary output value NOx0 is a function of the actual
mean piston speed cm and the fuel mean pressure pmf. The second
part is the nonlinear set point deviation model. This extension
models the transient deviations or static offsets of the NOx emis-
sion values due to the changed boundary conditions of the com-
bustion. The output of the set point deviation model is the correc-
tion factor �NOx

. This correction factor models the ratio between
the actual NOx emissions and the NOx base map value. The NOx
correction factor is modeled as a function of the operating point
variable mean piston speed and fuel mean pressure as well as the
additional inputs �i. Since the influences of these additional inputs
may vary in the operating range, the operating point variables
have to be included in the correction factor �NOx

model,

�NOx
= f�cm,pmf,�1,�2, . . . ,�n� �5�

The inputs �i are the ratios of relevant engine process variables to
their base map values. These variables represent the relevant
boundary condition of the combustion. An input variable selection
algorithm selects these variables. The selection algorithm and the
relevant engine process variables used are discussed in detail in
Sec. 5. The variables �i are calculated as

�i =
ui

ui0
�6�

where ui is the actual value of the relevant engine process vari-
able. The base map value ui0 of this relevant engine process vari-
able again depends on the actual mean piston speed and the fuel
mean pressure,

ui0 = f�cm,pmf� �7�

The actual emissions value NOx is then calculated as a multipli-
cation of the base map value and the NOx correction factor,

NOx = �NOx
NOx0 �8�

Neither the correction factor nor the base map value has any ad-
ditional dynamics. The dynamics are considered only in the tran-
sient behavior of the inputs �i. The structure is similar to that of
the approach reported in Ref. �12�, where the proposed linear set
point deviation model is adopted as a virtual sensor to estimate
and control the actual NOx emissions at the engine out. Compared
with Ref. �12�, the main difference in this research is the nonlinear
formulation of the set point deviation model. Since the PM emis-
sions act highly nonlinear to air/fuel-ratio deviations, the linear
assumption would not be appropriate. Additionally, since the
model should cover the entire operating range of the engine, large
deviations from the standard operating point settings can occur in
all boundary conditions. The model can be calibrated with static
measurement data due to the quasistationary formulation. This
simplifies the parametrization significantly.

The relevant engine process variables used as inputs into the set
point deviation model can be provided by a mean-value model or
by sensor signals. The application area of the REM defines the
final enveloping structure �see Sec. 6�. The derivation of the set
point deviation model is presented in more detail in the next sec-
tion.

5 Set Point Deviation Model
An important starting point for the design of the set point de-

viation model is the choice of the relevant inputs. Therefore, the
inputs are selected by an IVS algorithm �13�. Possible inputs are
characteristic engine process variables such as combustion center
or cylinder mass. The efficient structure of the model is prepared
by a symbolic regression algorithm based on genetic-

programming techniques �14�. While the symbolic regression

APRIL 2010, Vol. 132 / 042803-3
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ould also be used as an IVS algorithm, the advantage of separat-
ng the two steps is a reduced calculation time. The derivation of
he model �ANN� used in the IVS algorithm takes around 10 s on
modern desktop computer. In contrast, for a given input combi-

ation on the same computer, the symbolic regression needs more
han 50 h to find the expected structure. A good selection of inputs
ith a poorly trained symbolic regression still has an insufficient
tness value. Therefore, it is likely not chosen for the next gen-
ration. In addition, the separation simplifies the application of
pecifications to the number of inputs. Clearly, using the symbolic
egression as an IVS algorithm is thus not recommended.

The advantage of these process-relevant inputs and their func-
ional coherence to the emission values is the reduction of param-
ters needed to describe the emission formation. The adequate and
herefore efficient structure reduces calculation time. The design
rocedure of the set point deviation model can be divided into
hree main steps:

1. definition of the relevant process variables by expert knowl-
edge

2. selection of candidate variables from a set of characteristic
process variables using the IVS algorithm

3. determination of a lean model structure based on the SR
algorithm

he three steps are discussed in detail in Secs. 5.1–5.3.

5.1 Characteristic Process Variables of the Engine. Most of
he inputs �actuator values� into the system do not influence the
mission values directly. The following line of action exemplifies;
he EGR valve actuator signal implies an open valve area. This
alve area yields a certain EGR mass flow, which influences the
ylinder charge when the intake valve is closed. Finally, the ex-
aust gas mass in the cylinder significantly influences the raw
missions. Therefore, the model complexity can be reduced using
irectly the exhaust gas mass in the cylinder instead of using the
ctuator signal as an input.

Analogously to this example, typical engine process variables
ust be defined first. The number of process variables used as

nputs should be equal to or less than the number of actuators of
he system. Otherwise, an overdetermined system results. Table 1
hows the characteristic process variables used. Of course, the list
s not complete, and other variables could be added. In addition,
he actuator input signals are added. The values that are not mea-
ured directly are estimated. The EGR fraction in the intake mani-
old is estimated based on the CO2 measurement signal in the
ntake and exhaust receivers. The cylinder charge is estimated
ased on the EGR ratio and the intake mass flow sensor signal.

The total cylinder charge is thus composed of intake air, exter-
al EGR, internal EGR, and injected fuel mass. The cylinder
harge is divided into an air fraction �xair� and an exhaust gas
raction �xeg� with a stoichiometric air/fuel ratio. A one-zone heat
elease analysis is performed to obtain the in-cylinder process
ariables. The model used to calculate the liquid fuel length and
he lift-off length of the injection spray is proposed by Refs.
15,16�. The next step is to find the best combination of these
rocess variables to build the inputs into the correction factor
odel. It is not possible to calculate all combinations of inputs

ue to the limited computational resources �17�. Therefore, an
nput selection algorithm based on GP techniques is used to
hoose a promising combination out of the potential inputs. In
otal, 40 potential inputs are delivered to the IVS algorithm. The
ransient estimation of the used relevant engine process variables
s discussed in Sec. 6.

5.2 Input Variable Selection Algorithms. The IVS is the
ext step in the modeling approach. If the system is well known,
he relevant inputs into the system can be selected by expert
nowledge. Often, the coherences of physical systems are not well

nderstood or they are computationally expensive to model. The
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practitioner thus needs an algorithm that selects the relevant in-
puts directly from measurement data. Algorithms for the IVS task
can be classified in wrapper �model-based� or filter �model-free�
methods �for details, see Refs. �18,13��. Both approaches are
briefly discussed next. Filter techniques utilize a statistical mea-
sure to decide the interdependencies of the input and output vari-
ables as the basis for the IVS. A popular method for the input
selection is the principal component analysis �PCA� �19�. Its
drawback is its sensitivity to noise and data transformations. The
underlying assumption of a linear structure is contradictory to the
present highly nonlinear system being analyzed here. For a non-
linear system, a common procedure for a filter-based IVS ap-
proach has not been established yet in the scientific community.

In contrast, the wrapper approach used in this study treats the
input selection search as an optimization of an arbitrary model
structure. The input selector exists as a wrapper around the fitness
evaluation and the model calibration block. Figure 5 shows the

Table 1 The 40 characteristic process variables used

Actuator signals
uvtg Variable turbine geometry input
uegr EGR valve input
usoi Start of injection
prail Actual fuel rail pressure
tinj Injection duration
uthr Throttle input

Gas path variables
pim Intake manifold pressure
�im Intake manifold temperature
m*egr EGR mass flow
m*ia Intake air mass flow
pem Exhaust manifold pressure
�em Exhaust manifold temperature
ṁturb Turbine mass flow
� Air/fuel ratio
nturb Turbocharger speed

Cylinder charge
me Total mass
mair Air mass
mO2

Oxygen mass
mCO2

Carbon dioxide mass
meg Exhaust gas mass
xair Air ratio
xO2

Oxygen ratio
xCO2

Carbon dioxide ratio
xeg Exhaust gas ratio

Combustion characteristics
�ID Ignition delay
�B01 Start of combustion
�B05 Location of 5% fuel mass burnt
�B10 Location of 10% fuel mass burnt
�B50 Location of 50% fuel mass burnt
�B90 Location of 90% fuel mass burnt
�B95 End of combustion
��B10−B50 Duration from �B10 to �B50

��B50−B90 Duration from ��B50 to �B90�
��comb Combustion duration ��B01−�B95�
pmax Peak cylinder pressure value
�pmax

Location of peak cylinder pressure
q̇max Maximum heat release rate �HRR�
�q̇max

Location of maximum HRR

Injection spray
ll Liquid spray length
llo Lift-off length
�comb Air/fuel ratio of initial combustion
procedure of the wrapper approach. The input selection search
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roposes a potential subset of all the possible inputs. The fitness
valuator calculates a fitness value for each subset to estimate the
erformance of the selection. Therefore, the chosen model struc-
ure is calibrated using the selected inputs. Once a certain perfor-

ance is reached, the algorithm finishes. A frequently used input
election search is the forward or backward selection, where the
umber of inputs is systematically increased or decreased by the
ost or least relevant inputs, respectively. Its drawback is that it

ields only a suboptimal subset selection, especially if the initial
et of possible inputs includes highly correlated variables. Heuris-
ic techniques based on trial and error or so-called brute-force
pproaches can be used to find the optimal subset. These selection
lgorithms require an exhaustive search. If large numbers of pos-
ible inputs are available, these approaches are computationally
xpensive. Thousands of input combinations require a calibration
f the model structure. Hence, for practical algorithms, the search
s conducted for a satisfactory subset instead of an optimal subset.

An algorithm based on genetic-programming techniques is used
n this study to find a promising subset �14�. Each individual of
he population is represented by a bit string where 1 means that
he input is selected and 0 means that the input is not selected.
fter estimating the performance of each individual, a new popu-

ation is generated. Figure 6 shows the scheme used to produce
he new generation of individuals. The parameters of the IVS
lgorithm used are shown in Table 2. The best individuals proceed
irectly to the new generation �elitism�. The others are stochasti-
ally chosen for reproduction. Crossover and point mutation are
sed as genetic operators. Due to the fact that only a small subset
f potential inputs is to be selected, the mutation rate from 1 to 0
s higher than that from 0 to 1. The unequal mutation rate en-
ances individuals with nearly the desired number of inputs.
herefore, the algorithm converges faster. The fitness value of the
ctual individuals is tested by a model. The model to estimate the
utput values can be a polynomial �see Ref. �20��. Because of its
igher flexibility, the output is calculated with a feedforward ANN
n this study. The ANN is adapted to the training data points y for
very new combination of inputs in the actual population. The
tness value and model output ŷ of each combination is then
tored in memory to avoid multiple evaluations of the same selec-
ion. The fitness value of the selection is calculated as the mean

Input Selection Search (GA)

Fitness Evaluation

Model Calibration (ANN)
Training data

New population

Validation data

Inputs selected Individual fitness

Population fitness

Best inputInput set

selection

Fig. 5 The wrapper approach as an input selection algorithm

elite

mutation

0 1 0010
crossover

Parents Children

0 1 0010

0 1 0010

0 1 0010

0 1 0010

1 0010 1

0 10 0 11
ig. 6 Bit string manipulation of the input selection algorithm
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square error and is additionally penalized with the factor f if the
number of the selected inputs nsel exceeds the desired quantity
ndes. The input selection search minimizes this fitness value J,

J =
1

m�
k=1

m

�y�k� − ŷ�k��2f �9�

where m is the number of measurement data and f is

f = �1 if nsel 	 ndes

nsel − ndes + 1 if nsel 
 ndes
� �10�

The stopping criterion is reached after the stagnation of the fitness
value during 20 generations. The desired quantity of inputs is set
to 3, in addition to the operating point variables �mean piston
speed and fuel mean pressure�. The ANN used has four neurons in
two hidden layers with four neurons and a linear output layer. The
transfer functions used are hyperbolic tangent sigmoid functions.
The number of parameters depends on the number of inputs. If
five inputs are selected, the number of parameters is 49 for the
ANN structure used. Hence, a large number of measurement data
points are necessary to calibrate the ANN. The measurement data
set is divided into a training data and a validation data set. The
best fitness value of the population stagnates approximately after
100 generations. If the population size is 500, 50,000 neural net-
works need to be adapted to the data set.

The result of the IVS algorithm is the Pareto front with the best
combination of inputs found. The Pareto front gives reliable re-
sults between one and approximately eight additional inputs. Fig-
ure 7 clearly shows that the fitness value of the NOx emissions
decreases significantly until three additional inputs to the operat-
ing point variables are reached. The benefit of a higher complexity
is very low. The six actuators �uegr ,uthr ,uvtg ,usoi ,uprail

, tinj� and the
engine speed can be summarized into three relevant process vari-
ables and the two operating point variables. If more than six or

Table 2 Parameters of the input selection algorithm

Population size 500
Generations �100
Desired number of inputs 3
Elitism fraction 0.1
Genetic operators Mutation, crossover
Crossover function Stochastic uniform
Crossover fraction 0.25
Mutation function Uniform
Mutation fraction 0.65
Mutation rate to 1 0.075
Mutation rate to 0 0.925
Selection function Stochastic uniform

Additional number of inputs
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Fig. 7 Pareto front of the input selection algorithm for the nor-

malized nitrogen oxide emissions without factor f
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even inputs into the model are used, the fitness value gets even
orse. The calibration algorithm of the ANN finds only a subop-

imal solution for the large number of parameters in this case.
here are two likely explanations for this effect. Either the prob-

em is overparametrized or the input range is overdetermined; i.e.,
everal inputs or combinations of them contain equivalent infor-
ations. Both cases result in an overfitted ANN, which performs
orse on the validation data. Additionally, fewer possible combi-
ations are tested with more than eight parameters due to the extra
enalty of the fitness value.

As expected, multiple combinations of inputs �due to the redun-
ant information� yield nearly the same fitness value in the case of
hree or more inputs. If only two inputs are selected, the choice of
he input subset is more sensitive. Thus, the engineer can choose a
ombination of “cheap” inputs. Inputs are called cheap if they are
ariables directly measured by a standard sensor or they can be
asily calculated based on available sensor signals.

The authors recommend the following input combination for
he nitrogen oxides:

• operating point �mean piston speed, fuel mean pressure�
• cylinder mass when the intake valve is closed me
• air fraction in the cylinder when the intake valve is closed

xair
• combustion center �B50

hich results in the following equation for the NOx correction
actor

�NOx
= f�cm,pmf,�me

,�xair
,��B50

� �11�

hen, inserting Eq. �11� into Eq. �8� yields the actual NOx emis-
ion value. The following inputs are recommended for the PM
missions:

• operating point �mean piston speed and fuel mean pressure�
• cylinder air mass when the intake valve is closed mair
• fuel rail pressure prail
• location of the 90% fuel mass burnt �B90

The PM correction factor is then estimated as

�PM = f�cm,pmf,�mair
,�prail

,��B90
� �12�

In the next step, the parameter-intensive ANN is replaced with
lean model structure determined by the SR algorithm.

5.3 Structure Derivation Based on Symbolic Regression.
s mentioned in the introduction of this section, the structure of

he set point deviation model is found with a SR algorithm �14�.
or all the SR calculations, the GPLab toolbox for MATLAB

® is
sed �21�. The toolbox is equipped with state-of-the-art genetic
perators, survival, and reproduction methods. The individuals of
he population are stored in a tree. Figure 8 shows the tree struc-
ure and the possible tree manipulations. Two kinds of mutation
an occur. The first is the point mutation where several nodes are
utated independently. Second is the tree mutation where a part

f the tree is exchanged with a new randomly generated tree. The
ew tree part has a maximal size of six nodes �initial maximal
evel�. Due to the open source code, the toolbox can easily be
xtended with the user’s own methods. GPLab uses functions and
erminals to represent the individuals. Any mathematical operation
an be used as a function. In this investigation, the functions ad-
ition, multiplication, division, exponential, and the power func-
ion are used.

Terminals can be input variables �u1 , . . . ,un�, parameters
c1 , . . . ,c8�, constants �e.g., ��, or random numbers. The param-
ters are optimized by a local search algorithm for every indi-
idual separately. The toolbox is therefore extended with a local
earch algorithm based on a Nelder-Simplex approach �22�. The
aximum number of variable parameters is approximately 8.

The symbolic regression is performed for two different engine

42803-6 / Vol. 132, APRIL 2010
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emission data sets in parallel. The data sets of both engines in-
clude approximately 300 static measurement points. Each data set
contains a base map of the engine and additionally measurement
data points, where all the actuator inputs are varied in six relevant
operating points, well distributed over the engine operating range.
The inputs and the resulting tree structure used are the same for
both data sets. Only the variable parameters are calibrated by the
local search algorithm for both data sets separately. The fitness
value of each individual is then calculated as the sum of the mean
square errors of both data sets.

The data sets used to generate and to calibrate the REM are
discussed in Sec. 7. Figure 9 compares the NOx emission fitness
values for various maximal tree size limits. The fitness values
decrease significantly up to a limit of 15 nodes for both data sets.
If the limit is set higher than 40 nodes, the mean square error
marginally decreases. Therefore, the maximal number of nodes is
set between 25 and 40. Oversized individuals are filtered out and
replaced by randomly generated new trees. All the important set-
tings of the symbolic regression algorithm used are shown in

e

∧

+

u2

u1
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×

u1

u3+

tree mutation

c1u1

+

+
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Fig. 8 Symbolic regression: tree manipulations

Number of nodes

M
ea

n
sq

ua
re

er
ro

r
[-

]

0 10 20 30 40 50 60
0

0.005

0.01

0.015

0.02

0.025

Fig. 9 Fitness value for the NOx emissions for the two differ-
ent data sets: light-duty engine „circle… and heavy-duty engine

„cross…
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able 3.
The resulting function for the NOx correction factor �NOx

is

���B50
· �xair

�xair
+C5�C8·a·b �13�

here a and b are defined as

a = ���B50

�xair

	C4·�me
+C2

�14�

b =
��B50

cm
+ C7 �15�

The mean fuel pressure is not included in the function. Hence,
he influence of the load on the correction factor is negligible.
urthermore, not all of the variable parameters are used. The re-
ulting formula has five variable parameters.

The generated function for the PM correction factor �PM is

�PM = ��
mair

�mair

a �C1/��B90
�−�prail�C4·b �16�

here a and b are defined as

a =
C2�mair

C3

�prail

+ C6 �17�

b = pmf + ��B90
+ C7 �18�

he mean piston speed is not selected as an input. The formula
ontains six variable parameters. Table 4 lists the optimized pa-
ameter values for the NOx and the PM formula. The parameters
or the NOx model diverge moderately for the two data sets. In
ontrast, the PM model parameters are much different for the two
ata sets.

The resulting small number of parameters of the models guar-
ntees their fast application to other engine types. In contrast to
he ANN model used for the IVS algorithm, the number of param-
ters needed can be reduced by a factor of 10. In addition, the
educed number of parameters is directly correlated with the
mount of measurement data needed for the calibration of the
odel. Figure 10 shows the calibration of the model on the heavy-

uty engine data set for different training data fractions. The
hole data set contains 258 measurement data points. Fifty ran-
omly chosen measurement data points are adequate to calibrate

Table 3 Parameters of the symbolic regression algorithm

opulation size 1000
enerations �100
unctions Plus, times, power, divide, exponential
erminals Constant, random number, parameter
umber of parameters 8
enetic operators Crossover, mutation
utation Point/tree
aximal tree size 25–40 nodes

nitial maximal level 6
litism Keep best

Table 4 Parameter value

C1 C2 C3 C

Light-duty engine
NOx ¯ 8.36 ¯ �
PM 5.01 �775 152 �4

Heavy-duty engine
NOx ¯ �3.61 ¯

PM 1.73 �0.02 463 �
ournal of Engineering for Gas Turbines and Power
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the model parameters as the performance on the validation data
set is comparable to the performance on the test data set. There-
fore, the number of measurement data to calibrate the models can
be reduced significantly.

6 Estimating the Selected Relevant Engine Process
Variables During Transients

Some of the transient inputs into the set point deviation model
can be provided directly by standard sensor signals of the ECU.
Nevertheless, several additional parts of the engine must be mod-
eled to estimate all of the selected relevant engine process vari-
ables. If the REM is used as a virtual sensor, the cylinder charge
variables �me ,xair� and the combustion characteristics ��B50,�B90�
must be estimated by a model. Figure 11 shows the signal flow
chart of the three combined models. The EGR mass flow is not
measured during transient operation of the test bench due to the
slow dynamics of the available CO2 measurement device. There-
fore, the cylinder charge estimation is necessary to compare the
REM estimations with measurement data. The combustion char-
acteristics are measurable with a real-time cylinder pressure
evaluation available at the test bench. The combustion model is
optional in this case. The cylinder charge variables are estimated
by a simple gas path model discussed in Sec. 6.1. The combustion
model is presented in Sec. 6.2.

If the emission model is used as a standalone, the entire engine
systems must be modeled. This includes the intake air path, the
exhaust gas path, the turbocharger, the EGR system, the gas-
exchange cycle, and the combustion cycle. In this case, all the
necessary dynamic signals can be estimated by a state-of-the-art
mean-value engine model �23�.

6.1 Cylinder Charge Estimation. The cylinder charge �mass
and gas composition� at intake valve closing must be estimated by
a model due to the lack of an EGR mass flow sensor. The remain-
ing gas path signals are measured directly by standard ECU sen-
sors. The EGR mass flow estimation is based on the intake mass
flow sensor signal and an engine mass flow estimation. The mass
flowthrough into the engine can be estimated as follows:

f the resulting formulas

C5 C6 C7 C8

�4.54 ¯ �2.41 �2.58
¯ 2.86 �1.33 ¯

�3.17 ¯ �3.04 �4.06
¯ 0.06 0.31 ¯

R
eg

re
ss

io
n

(R
2
)

[-
]

Training data fraction [-]
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.5

0.6

0.7

0.8

0.9

1

Fig. 10 Regression performance of the NOx emissions for the
heavy-duty engine data set for different training data fractions:
training data set „black… and validation data set „gray…
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m*e,in = �l�cm,pmf�
Vd�e�im

4�
�19�

here �l�cm , pmf� is the volumetric efficiency and �im is the den-
ity of the air in the intake manifold. The volumetric efficiency is
ainly a function of the mean piston speed and the fuel mean

ressure. The EGR mass flow can now be calculated as

m*egr =
d

dt
mim + m*e,in − m*hfm �20�

here m*hfm is the intake air mass flow sensor signal and mim is the
ass in the intake manifold. The mass in the intake manifold is

alculated using the ideal gas law. If the temperature in the intake
anifold �im is assumed to be slowly varying, the derivative of

he mass is estimated as

d

dt
mim =

d

dt
pim

Vim

R · �im
�21�

here �d /dt�pim is the derivative of the intake manifold pressure
ignal, Vim is the manifold volume, and R is the gas constant. The
nternal residual gas mass is estimated as follows:

mrg =
pemVc

R�em
�22�

here pem is the exhaust manifold pressure, �em is the engine-out
emperature, Vc is the top dead center cylinder volume, and R is
he gas constant of the exhaust gas.

The following sensor signals must be available to estimate the
ylinder charge:

• intake mass flow sensor
• pressure sensor in the intake manifold
• pressure sensor in the exhaust manifold
• temperature sensor in the intake manifold
• temperature sensor in the exhaust manifold
• engine speed

If no exhaust manifold pressure sensor is available, the signals
ust be estimated by a model, or the internal EGR mass must be

alculated by a different approach.

6.2 Combustion Model. In addition, a combustion model is
enerated using the same methodology as for the REM. The com-
ustion model estimates the combustion center and the location of
he 90% fuel mass burnt. This model is necessary if no cylinder
ressure sensor signal is available. The structure of the combus-
ion model is similar to the emission model. Again, the model is
ormulated as an extended quasistationary approach. The combus-
ion center is calculated as follows:

�B50 = usoi + ��B50 �23�

here usoi is the start of injection angle and ��B50 is the duration

ṁhfm

pim

pem

ϑim

ϑem

Cylinder
Charge
Model

pmf

cm

usoi

prail

me

xair

Model
Combustion

ϕB50

ϕB90

PM

NOx

Raw
Emission

Model

ig. 11 Interactions of the three models: virtual sensor
pplication
etween start of injection and location of 50% fuel mass burnt
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expressed in crank angle degrees. Then, ��B50 is estimated as

��B50 = ���B50
��B500

�24�

where ��B500
is the mapped quasistationary value and ���B50

is
the correction factor. The correction factor is a function of the
operating point, the cylinder mass me, the air fraction at the closed
intake valve xair, and the fuel rail pressure prail,

���B50
= f�cm,pmf,�me

,�xair
,�prail

� �25�

The functional coherences are derived again by the symbolic re-
gression algorithm. The location of 90% fuel mass burnt is esti-
mated similarly as

�B90 = usoi + ��B90 �26�

Then, ��B90 is calculated as

��B90 = ���B90
��B900

�27�

where the correction factor ���B90
is estimated as

���B90
= f�cm,pmf,�me

,�xair
,�prail

,�usoi
� �28�

If necessary, other combustion variables such as peak pressure,
maximum heat release rate, or location of 10% fuel mass burnt
can be estimated analogously. The following ECU signals must be
provided to estimate the combustion characteristic variables:

• start of injection
• fuel rail pressure
• injected fuel mass
• engine speed

The other required signals �me ,xair� are estimated by the cylinder
charge model.

7 Experimental Setup
The measurements are carried out on the two different engine

types shown in Table 5. Both are modern common-rail DI diesel
engines equipped with a turbocharger and a high-pressure EGR
system. A base map of both engines is measured. In addition, all
the actuator inputs are varied in six relevant operating points, well
distributed over the engine operating range. The systematic varia-
tions are measured starting from the base map settings. Single and
double actuator variations are conducted to cover the entire oper-
ating range of the engine. The data sets of both engines include
approximately 300 static measurement points. Measurements of
dynamic operation are conducted as well to test the transient pre-
diction capability of the proposed control-oriented emission
model. The measurements include load steps at constant engine
speed, accelerations at constant load, and transient engine cycles
like the European transient cycle �ETC�.

The exhaust emissions are measured with an AVL CEB II gas
analyzer. The PM emissions are measured with an AVL 430 opaci-
meter and an AVL 415 S smoke meter. During the transient mea-
surements, a fast nitric oxide �NO� sensor is used �Cambustion
CLD 400�. A correlation curve is used to calculate the filter smoke
number based on the opacity signal during the transient operation.
The EGR rate is estimated based on CO2 measurements in the
intake and the exhaust manifolds. All the signals are stored at 100
Hz. The ECU signals are delivered to the recorder by the CAN

Table 5 Technical data of the test bench engines

Type HD DI LD DI
Feature EGR, twin scroll turbine EGR, VNT
Displacement 6.51 3.01
Cylinders 6 6
bus. During transient measurements, the ECU variables are also
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Downlo
tored on the ECU application computer, at 1 kHz or 200 Hz,
espectively. The measurement data are synchronized by reference
ignals stored on both recorders.

Results and Discussion
The simulation results of the model structures derived with the

roposed method show a good correlation with the static measure-
ent data. Figures 12 and 13 show the results of the NOx and PM

mission model for the light-duty �LD� and the heavy-duty �HD�
ngine types for the total data sets including the training and the
alidation data. The regression of the PM emission is worse due to
he relatively high measurement errors, especially for low filter
moke numbers. Overall, the model performs better on the HD
ngine data set. This fact can be explained by the two different
ase maps used for the LD engine measurements. Unfortunately,
or the LD engine only static and dynamic measurement data with
ifferent base maps were available. The transient measurements
re carried out with a different start of injection timing. Therefore,
he base map used for the transient measurements is taken to
alculate the correction factor values for the static measurement
ata as well. Hence, large correction factors occur in most static
easured actuator variations. The results are comparable with

hose obtained from the neural network approach used in the IVS
lgorithm, even though the number of parameters is reduced by a
actor of 10. The portability of the emission models is shown with
he two data sets used from engines of very different sizes. This
orroborates the use of well selected characteristic engine process
ariables as inputs to the nonlinear statistical model. Figures 14
nd 15 show the results of the NOx and PM emission model
oupled with the combustion model for the light-duty and the
eavy-duty engine types. The performance of the total model is
omparable to the results of the emission model only. Therefore,
he estimation of the combustion center and combustion end can
e used instead of cylinder pressure sensor data. Figure 16 shows
he results of the emission model using nonoptimized parameters.
he parameters of the LD engine data set are used to calculate the
missions of the HD engine data set. The performance obtained
ith the nonoptimized parameters shows the portability not only
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ig. 12 Regression plot of the NOx emissions: „a… LD and „b…
D engine types using in-cylinder pressure sensors
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ig. 13 Regression plot of the PM emissions: „a… LD and „b…

D engines using in-cylinder pressure sensors
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of the derived structure but also of the parameters even though the
estimation of the PM emissions has some outliers.

The extended quasistationary model trained on static measure-
ment data is then tested with the same parameters during transient
operating conditions to show its extrapolation capabilities. All the
transient results shown are measurement data from the light-duty
engine. The transient simulations are conducted together with the
cylinder charge and the combustion model to estimate the mass
composition when the intake valve is closed and the combustion
characteristics, respectively. Figure 17 shows a comparison be-
tween measurement data and simulation results of the combustion
model during a load step. Due to the smaller amount of air mass in
the cylinder, the combustion process takes longer during the tran-
sient phase. Figure 18 shows the performance of the REM during
a load step from 20% to 80%. The results of the simulation agree
well with the measurement data. During the turbolag phase, the
amount of PM emissions detected is ten times higher. Neverthe-
less, the emission model is able to predict these high deviations.
In this phase, the NOx emissions are lower than those in static
operation due to the reduced amount of oxygen available during
combustion. The transient characteristics of the investigated en-
gine are simular to results reported in Ref. �24�. The oscillation of
the NOx emission observable after the load step is due to the
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Fig. 14 Regression plot of the NOx emission model coupled
with the combustion model: „a… LD and „b… HD engine types
without using in-cylinder pressure sensors
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Fig. 15 Regression plot of the PM emission model coupled
with the combustion model: „a… LD and „b… HD engine types
without using in-cylinder pressure sensors

R2 = 0.94737

Simulated NOx [g/kg]

M
ea

su
re

d
N

O
x

[g
/k

g]

0 20 40 60
0

20

40

60

R2 = 0.3909

Simulated PM [FSN]

M
ea

su
re

d
PM

[F
SN

]

0 1 2 3 4
0

1

2

3

4

(b)(a)

Fig. 16 Regression plot of the emission model using the HD
engine data set with the LD engine parametrization, NOx: „a… PM

and „b… emissions
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scillating EGR valve. Since the control of the engine was still
nder development, the transient behavior of the EGR controller
s not optimized yet, which explains these oscillations. However,
he model is able to predict this oscillation for both species of
ngine-out emissions.

Figures 19–22 show simulation results of actuator steps. The
ctuator steps are carried out at 60% load and an engine speed of
000 rpm. The gas path actuators �EGR valve and turbine actua-
or� influence the boundary condition of the combustion dynami-
ally. The slow increase in boost pressure due to the turbo lag is
vident in the emission data as well. The PM emissions are more
ensitive to lower boost pressure than the NOx emissions. In con-
rast, the higher EGR rate reduces the NOx emissions by one-half.
he mixing dynamics of the intake receiver and the EGR control-

er significantly influence the EGR mass at the closed intake
alve. In contrast, the very fast injection actuators also cause a
tep in the emissions. The only relevant dynamics are the exhaust
ath delay time and the gas mixing process in the exhaust system.
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ig. 17 Comparison of measurement data and simulation re-
ults of the combustion model during a load step from 20% to
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9 Conclusion
The purpose of this analysis was to formulate a method to de-

rive a control-oriented model of the raw emissions of a diesel
engine. The mixed physics and regression approach proposed sim-
plifies the generation of nonlinear models. In addition, the models
derived are advantageous due to their increased portability to
other engines. The methodology proposed in this paper is appli-
cable to various modeling problems.

The method drastically reduces the calibration effort due to the
reduced number of parameters needed to describe the transient
raw emissions. The model is formulated using an extended qua-
sistationary approach. The extension to the base map part de-
scribes the set point deviations during transient operating condi-
tions of the engine. The deviations are predicted using correction
factors. Due to the extended quasistationary approach, the raw
emission model can be calibrated with static measurement data,
which lowers the application costs of the model and the require-
ments for the test bench.

The inputs to the raw emission model are chosen by an input
variable selection procedure based on a genetic-programming
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Fig. 20 Comparison of simulation results and measurement
data of „a… PM and „b… NOx emissions during a boost pressure
step from 2.1 bars to 1.7 bars: measurement „black… and raw
emission model „gray…

Time [s]

PM
[F

SN
]

[-
]

0 5 10 15
0

0.5

1

1.5

2

Time [s]

N
O

x
[g

/k
g]

0 5 10 15
0

5

10

15

20

25

30

(b)(a)

Fig. 21 Comparison of simulation results and measurement
data of „a… PM and „b… NOx emissions during a fuel rail pressure
step from 600 bars to 800 bars: measurement „black… and raw
emission model „gray…
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Fig. 22 Comparison of simulation results and measurement
data of „a… PM and „b… NOx emissions during the start of injec-
tion in crank angle „CA… before top dead center „bTDC…: mea-

surement „black… and raw emission model „gray…
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Downlo
rapper approach. The input selector is fed with some 40 charac-
eristic process variables. Due to the highly redundant process
ariables used as candidates, the input variable selection algo-
ithm proposes a selection of promising subsets. As expected, sev-
ral combinations show a comparable performance. The practitio-
er has the option of choosing a subset of inputs that is easy to
easure or to estimate.
The functional structure of the raw emission model is derived

ith a symbolic regression algorithm. The toolbox used is ex-
ended with a local search algorithm to calibrate the parameters of
he functional relations generated. The separation of the input
ariable selection task from the model structure generation signifi-
antly reduces the computational effort. The performance of the
erived model is similar to that of an ANN with around ten times
ore parameters. The method used is tested on two different en-

ine types, and it yields similar results.
The raw emission model is embedded in a simple gas path
ean value and in a combustion model. The combination of the

hree models allows an estimation of the raw emissions in tran-
ient operating conditions, for example, as virtual sensor directly
n the ECU. The extended quasistationary approach is able to
redict the quantities of the raw emissions during various tran-
ients. Hence, the extrapolation capability of the control-oriented
odel is shown.
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